1-3 Piecewise and Step Functions

Objectives:

- -I can graph a piecewise function
- I can write the equation of a piecewise function
- -I can identify least and greatest integer functions

A piecewise function is a function with different equations defined over unique intervals of x.

For example:

Write the equation for the following piecewise functions

Problem 2: Taxi Fares

In 2006, the rate for a taxi ride in Macon, Georgia, was \$1.20 for the first mile or part of a mile and \$1.20 for each additional mile or part of a mile.

1. Define a piecewise function, g(x), for the cost of a taxi ride up to 5 miles.

$$f(x) = \begin{cases} \$1.20, & 0 < x \le 1 \\ \$2.40, & 1 < x \le 2 \end{cases}$$
miles
$$\begin{cases} \$3.60, & 2 < x \le 3 \\ \$4.80, & 3 < x \le 4 \\ \$6.00, & 4 < x \le 5 \end{cases}$$

2. What is the slope of each interval? Explain your reasoning.

3. Graph g(x) for x < 5 miles.

Describe the graph of the function as either increasing or secreasing.

Neither (constant)

You have just graphed a *step function*. A **step function** is a piecewise function whose pieces are disjoint constant functions.

5. Why do you think this function is called a step function?

Problem 3 Special Step Functions

The *greatest integer function* is a special kind of step function. The **greatest integer function**, also known as the **floor function**, $G(x) = \lfloor x \rfloor$ is defined as the greatest integer less than or equal to x.

1. Evaluate each using the greatest integer function.

a.
$$[2] = 2$$

b.
$$[0.17] =$$

c.
$$[2.34] = 2$$

d.
$$[-1.2] = -2$$

e.
$$\lfloor 2.99999 \rfloor = 2$$

f.
$$[-0.2] = -$$

The *least integer function* is another special kind of step function. The **least integer function** $L(x) = \lceil x \rceil$ also known as the **ceiling function**, is defined as the least integer greater than or equal to x.

3. Calculate each:

a.
$$[2] = 2$$

b.
$$\lceil 0.17 \rceil =$$

c.
$$[2.34] = 3$$

d.
$$\lceil -1.2 \rceil = -1$$

f.
$$[-0.2] = 0$$

Graph
$$L(x) = \lceil x \rceil$$
.

