Write a quartic function in intercept form for the given graph, whose x-intercepts are integers. Assume that the constant factor a is either 1 or -1.

16.

17.

$$f(x) = + (x+3)(x)(x-2)(x-4)$$

 $(x+3)(x-2)(x-4)$

Write a cubic function in intercept form for the given graph, whose x-intercepts are integers. Assume that the constant factor a is either 1 or -1.

14.

15.

3-4 Solving Inequalities

Objective: Students can solve polynomial inequalities.

Recall from last year.

Solve the following inequalities. Graph your solution. State your solution in set and interval notation.

Solving Inequalities for Polynomials

1. Find Boundary Points

2. Find Solution Intervals

Make a sign chart to be more efficient and use <u>multiplicity rules</u> and <u>end behavior</u> models.

Determine the x-values that cause the polynomial to be a)zero b)positive c)negative $f(x) = (x+7)(x+4)(x-6)^{2}$ $x = -7 - 4, \quad 6$ $x = -7 - 8, \quad 7$ $x = -7 - 8, \quad 7$ x = -

Solve the Polynomial Inequality

$$x^3 - 4x^2 - x + 4 \le 0$$
8 elow 8 elow w (5 quare

continued

Sign chart

Solve the Polynomial Inequality

$$= 2x^{2} + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 7$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x - 20 > 0$$

$$= 3 + 2x^{2} - 19x$$

Solve the Polynomial Inequality

$$x^{4} - 4x^{3} - 7x^{2} + 22x + 24 \le 0$$

$$(-2, -1) \quad U \quad [3, 4]$$

Check for understanding:

1. Find where the polynomial is zero, positive, or negative

$$f(x) = (x+3)(x+1)^2(x-4)^2$$