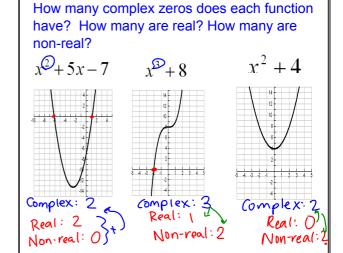
4.2 Complex Zeros

- I can find all zeros of a polynomial including non-real complex zeros
- I can write a polynomial from its zeros
 - I can do a linear factorization

Fundamental Thm of Algan nth degree polynomial will have n complex zeros

- both real & non-real

(May be a combination of real and non-real complex. Some zeros may be repeated)


Complex Conjugates: complex imaginary factors come in conjugate pairs

(if 3i is a zero, - 3i is also)

odoffunctions will always have at least one real zero -why??

Find all zeros of $p(x)=x^3-125$. Include any multiplicities greater than 1. First factor the difference of two cubes.

Find all zeros of $p(x)=x^4-256$. Include multiplicities greater than 1. Find use factoring patterns to factor the polynomial.

Linear Factorization Thm: a polynomial of nth degree has n linear factors

(some factors may be complex imaginary)

$$(x-3)(x+3)(x-i)(x+i)$$

$$(x-3)(x+3)(x-i)(x+i)$$
Factors:
$$(x-2ero)$$

Write a polynomial function of minimum degree with the following zeros and multiplicities:

4, 7,(2i), -2i (x-4)(x-7)(x-2i)(x+2i) (x-4)(x-7)(x-2i)(x+2i) (x-4)(x-7)(x-2i)(x+2i) (x-4)(x-7)(x-2i)(x+2i) (x-2-3i)(x-2-3i)3 with multi of 2 5+i with multi of 3 5-i $(x-3)^2(x-(s+i))^3(x-(s-i))^3$

Find all zeros and write a linear factorization of the following polynomial:
$$x = -5$$
, $i_1 - i_2$
 $x^3 + 5x^2 + x + 5$
 $x^3 + 5x^2 + x + 5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$
 $x = 0 \pm \sqrt{0} - 4(i)(i)$
 $x = -5$
 $x = -5$

Find all zeros and write a linear factorization of the following polynomial:
$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 5x^{2} - x - 6$$

$$x^{4} + x^{3} + 2x^{2} + 7x + 6$$

$$x^{4} + x^{4} +$$

Use the given zero to find the remaining zeros and write a linear factorization: