5-1 Rational Functions

Objectives:

- I can determine the domain, range, end behavior, and intervals of increasing and decreasing of rational functions.
- I can identify the transformation of a given function and sketch a graph
- I can write a rational equation given a graph.

State the domain of
$$f(x) = \frac{1}{x}$$
 $\times \neq 0$

The function accepts all real numbers except _O, because division by _O is undefined. So, the function's domain is as follows:

- As an inequality: x < 0 or x > 0
- In set notation: $x \mid x \neq Q$
- In interval notation (where the symbol ∪ means *union*):

$$(-\infty, \bigcirc) \cup (\bigcirc, +\infty)$$

Domain:
$$(-\infty,0) \cup (0,\infty)$$

going to the right x Increases without Bound		
x	$f(x) = \frac{1}{x}$	
100	0.01	
1000	0.001	
10.000	(2.0001	

Determine the end behavior of $f(x) = \frac{1}{x}$.

First, complete the tables.

Applied to the right going to the left

x Decreases without Bound		
х	$f(x) = \frac{1}{x}$	
-100	- 0.01	
-1000	100.0 -	
-10,000	1000.0 -	

Next, summarize the results.

• As
$$x \to +\infty$$
, $f(x) \to 0$.

• As
$$x \to -\infty$$
, $f(x) \to \bigcirc$

Examine the behavior of $f(x) = \frac{1}{x}$ near x = 0, and determine what this means for the graph of the function.

First, complete the tables.

x Approaches 0 from the Postive Direction		
х	lec	Direction $f(x) = \frac{1}{x}$
0.01		100
0.001		1000
0.000	1	10,000

x Approaches 0 from the Negative Direction		
x	$f(x) = \frac{1}{x}$	
-0.01	-100	
-0.001	-1000	
-0.0001	-19000	

Next, summarize the results.

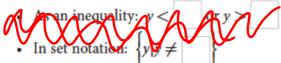
• As
$$x \to 0^+$$
, $f(x) \to -\infty$.
• As $x \to 0^-$, $f(x) \to -\infty$.

Asymptote

The behavior of $f(x) = \frac{1}{x}$ near x = 0 indicates that the graph of f(x) approaches, but does not cross, the [x-axis/y-axis], so that axis is also an asymptote for the graph.

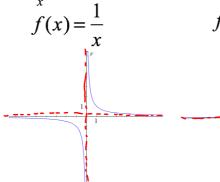
State the range of $f(x) = \frac{1}{x}$.

, so the function's range is as follows: The function takes on all real numbers except



• In interval notation (where the symbol \cup means union): $\left(-\infty, 0\right) \cup \left(0, +\infty\right)$

Look at the following Graphs $f(x) = \frac{1}{x}$ and $f(x) = \frac{1}{x^2}$ and compare. What is going on? $f(x) = \frac{1}{x^2}$



· Domain: $(-\infty, \delta) \cup (0, \infty)$

Similarity:

Right ends same $x \to +\infty$, $y \to 0$ H. Asymptote is

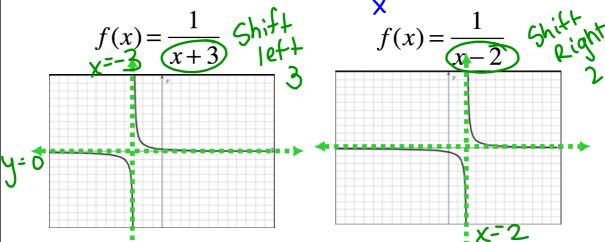
at y = 0V. Asymptote

at x = 0Difference:

Left side is

positive for $\frac{1}{x^2}$ Ranges: $\frac{1}{x}:(-\infty,0)\cup(0,\infty)$ $\frac{1}{x}:(0,\infty)$

Look at the following graphs and the <u>parent function</u> from your function booklet and answer the question below.



Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$f(x) = \frac{1}{x} + 2$$

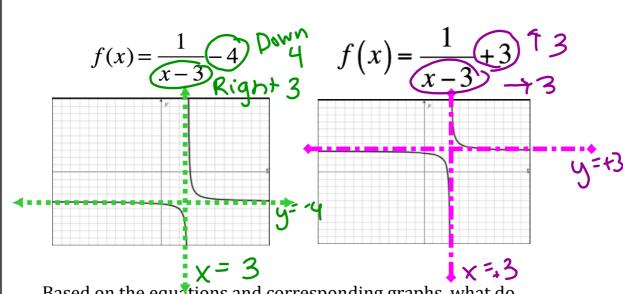
$$5 \text{ with } y = 2$$

$$y = 2$$

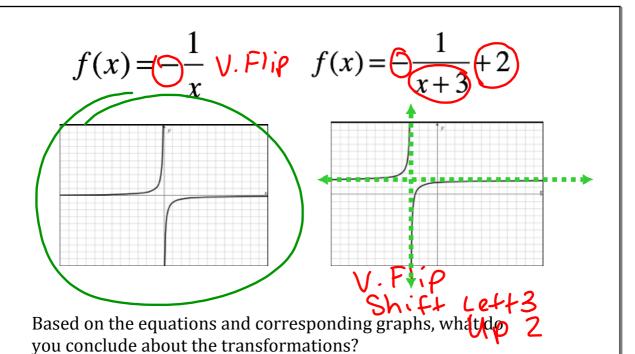
$$y = 2$$

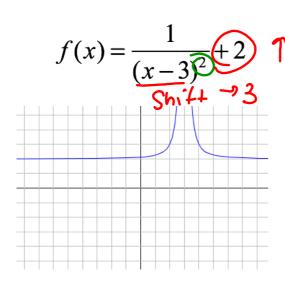
$$y = 4$$

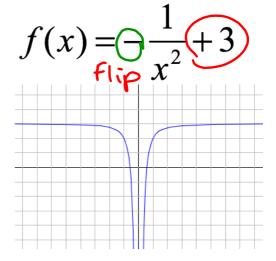
Based on the equations and corresponding graphs, what do you conclude about the transformations?



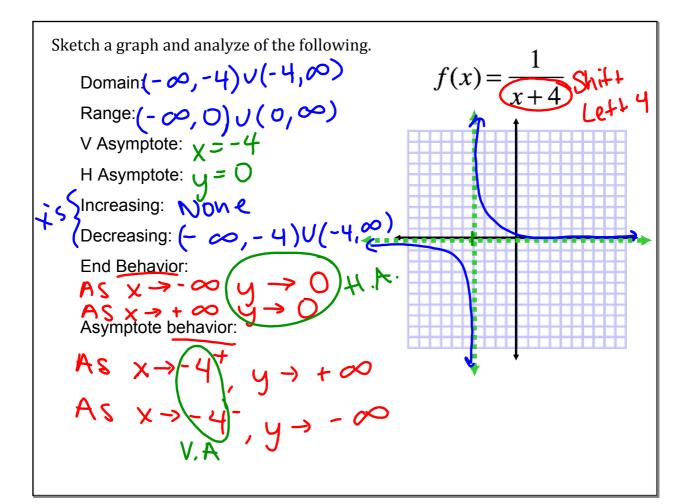
Based on the equations and corresponding graphs, what do you conclude about the transformations?







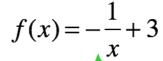
Based on the equations and corresponding graphs, what do you conclude about the transformations?

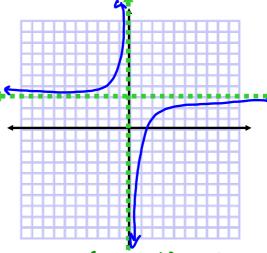


Sketch a graph and analyze of the following.

- \times Domain: $(-\infty, 0) \vee (0, \infty)$
- Range: $(-\infty,3) \cup (3,\infty)$ V Asymptote: $\chi = 0$
- H Asymptote: y = 3Significantly formula of the symptote o
- Decreasing: None

 - End Behavior: As $x \rightarrow -\infty$, $y \rightarrow 3$
 - As x + > , y 3
- √. Asymptote behavior:
- As $x \rightarrow 0^+$, $y \rightarrow -\infty$ As $x \rightarrow 0^-$, $y \rightarrow +\infty$



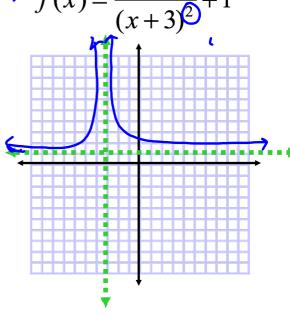


- Transformations:
- · V. Flip

Sketch a graph and analyze of the following.

- Domain: $(-\infty, -3)((-3, \infty)) f(x) = \frac{1}{(x+3)^2} + 1$
- Range: (1, @)
- V Asymptote: $\chi = -3$
- H Asymptote: y = +1
- Increasing: $(-\infty, -3)$
- Decreasing: $(-3, \infty)$
- **End Behavior:**

Asymptote behavior:



Based on the conclusions you made, work with a partner to write an equation based on the following graphs.