Radical Equations

Solve the equation.

1.
$$\sqrt{x-9} = 5$$

3.
$$\sqrt{x+3} \stackrel{?}{=} (x+1)^2 (x+1)$$

 (heek)
 $-x$
 $3 = x^2 + x + 1$
 -3
 $0 = (x^2 + x - 2)$
 $0 = (x + 2)(x - 1)$
 (heek)
 (heek)

9.
$$5 - \sqrt[3]{x-4} = 2$$
 that:
 $5 - \sqrt[3]{31-4} = 2$
 $3\sqrt[3]{x-4} = 3$ $5 - \sqrt[3]{27} = 2$
 $3\sqrt[3]{x-4} = 3$ $5 - \sqrt[3]{27} = 2$
 $3\sqrt[3]{x-4} = 27$ $1/[x-3]$ $1/[x-4] = 2$
 $1/[x-4] = 27$ $1/[x-3]$ $1/[x-4] = 2$
 $1/[x-4] = 27$ $1/[x-4] = (4x)^{\frac{1}{3}}$

16.
$$2(x-1)^{\frac{1}{5}} = (2x-17)^{\frac{1}{5}}$$

2.
$$\sqrt{3x^2} = 6^2$$
 Check:
 $\sqrt{3(12)} = 6$
 $\sqrt{36} = 6$
 $\sqrt{3} = 6$
 $\sqrt{3} = 6$

4.
$$\sqrt{(15x+10)} = 2x + 3$$

7.
$$((x-6)^{\frac{1}{2}})^{\frac{1}{2}} = (x-2)^{2}$$

 $\begin{array}{c} \chi - (x-6)^{\frac{1}{2}} = (x-2)^{2} \\ \chi - (x-6) = \chi^{2} - 4\chi + 4 \\ - \chi + (x-6) = \chi^{2} - 5\chi + 10 \\ 0 = \chi^{2} - 5\chi + 10 \\ \chi = 5 + \sqrt{25 - 40} \\ \chi = 5 +$

10.
$$2\sqrt[3]{3x+2} = \sqrt[3]{4x-9}$$

14.
$$(5x+1)^{\frac{1}{4}} = 4^{\frac{1}{4}}$$
 Check:
 $5x+1 = 254$ (5(51)+1)¹⁴ = 4
 $\frac{-1}{5x} = \frac{255}{5}$ (256)¹⁴ = 4
 $1 = 4$ $1 = 4$ $1 = 4$ $1 = 4$ $1 = 4$ $1 = 4$

- **18.** Anatomy The surface area S of a human body in square meters can be approximated by $S = \sqrt{\frac{hm}{36}}$ where h is height in meters and m is mass in kilograms. A basketball player with a height of 2.1 meters has a surface area of about 2.7 m^2 . What is the player's mass?
- 20. Amusement Parks For a spinning amusement park ride, the velocity v in meters per second of a car moving around a curve with radius r meters is given by $v = \sqrt{ar}$ where a is the car's acceleration in m/s². If the ride has a maximum acceleration of 30 m/s² and the cars on the ride have a maximum velocity of 12 m/s, what is the smallest radius that any curve on the ride may have?

any curve on the ride may have:

$$12^2 = \sqrt{30(r)}^2$$

 $144 = 30r$
 $30 = 30$
 $r = 4.8 \text{ m}$

23. Explain the Error Below is a student's work in solving the equation $2\sqrt{3x+3}=12$. What mistake did the student make? What is the correct solution?

$$2\sqrt{3x+3} = 12$$
$$2(\sqrt{3x+3})^2 = 12^2$$
$$2(3x+3) = 144$$
$$6x+6 = 144$$
$$x = 23$$

Review

- 1. Given the zero x = -3i, find the remaining zeros of $h(x) = 3x^4 + 5x^3 + 25x^2 + 45x 18$
- 2. Given the zeros, x=1+2i and x=-2, write a function in factored form.