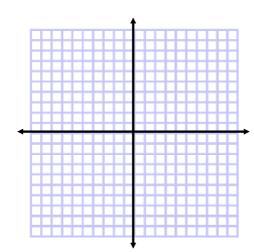

7-1 Rational Graphs

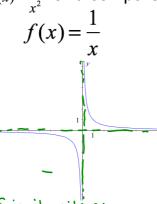
Objectives:

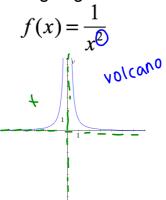

- I can determine the domain, range, symmetry, end behavior, and intervals of increasing and decreasing of rational graphs.
- I can identify the transformation of a given function and sketch a graph
- I can write a rational equation given a graph.

Rational w/ odd power

Equation:

$$\frac{1}{\chi^3}$$
 or $\frac{1}{\chi^5}$

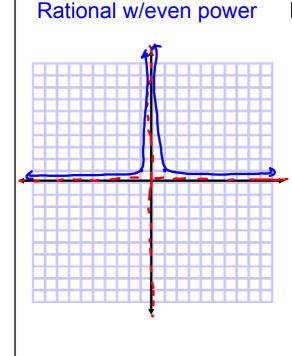

Domain
Range
Increasing
Decreasing
Left End Behavior


Right End Behavior

x-intercepts y-intercepts Vertical Asymptote(s): Horizontal Asymptote: One-to-One?

looks the Same as 1/x

Look at the following Graphs $f(x) = \frac{1}{x}$ and $f(x) = \frac{1}{x^2}$ and compare. What is going on?


Similarities:

- · Same asymptotes
- Top Right (orners both decreasing/ both positive
- ·Both ends going to zero
- · Same domain

Differences:

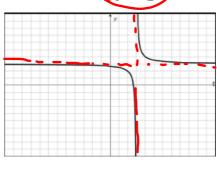
· Left sides are opposite ·/x² is a little steeper

·Ranges

Equation:
$$\frac{1}{X^2}$$

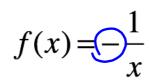
Domain
$$(-\infty,0) \cup (0,\infty)$$

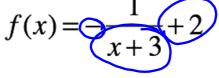
Range $(0,\infty)$
Increasing $(-\infty,0)$
Decreasing $(-\infty,0)$

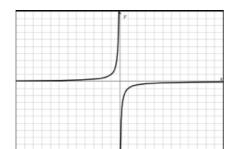

Decreasing
$$(0, \infty)$$

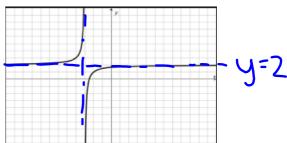
Left End Behavior $f(x) = 0$
Right End Behavior

$$x \rightarrow \infty$$
 $f(x) = 0$
x-intercepts
y-intercepts

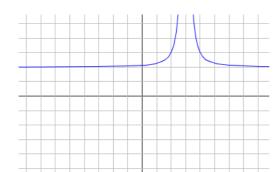

Vertical Asymptote(s):
$$\chi = 0$$

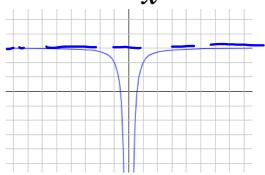

$$f(x) = \frac{1}{(x-3)} \underbrace{-4}$$


$$f(x) = \frac{1}{x-3} + 3$$



Based on the equations and corresponding graphs, what do you conclude about the transformations?




V. Flip

Based on the equations and corresponding graphs, what do you conclude about the transformations?

$$f(x) = \frac{1}{(x-3)^2} + 2$$

$$f(x) = -\frac{1}{x^2} + 3$$

Based on the equations and corresponding graphs, what do you conclude about the transformations?

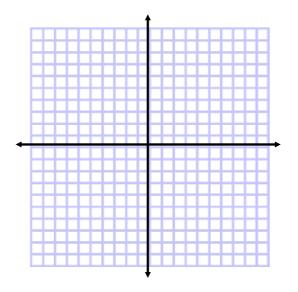
Sketch a graph and analyze of the following.

Domain:

Range:

V Asymptote:

H Asymptote:


Increasing:

Decreasing:

End Behavior:

Asymptote behavior:

$$f(x) = -\frac{1}{x} + 3$$

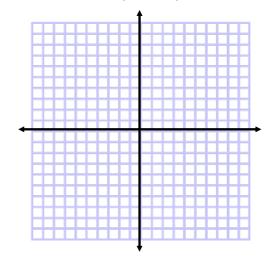
Sketch a graph and analyze of the following.

Domain:

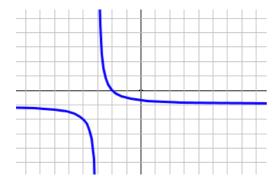
Range:

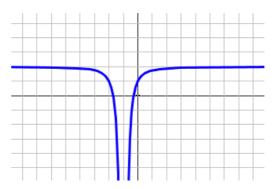
V Asymptote:

H Asymptote:


Increasing:

Decreasing:


End Behavior:


Asymptote behavior:

$$f(x) = \frac{1}{(x+3)^2} + 1$$

Based on the conclusions you made, work with a partner to write an equation based on the following graphs.

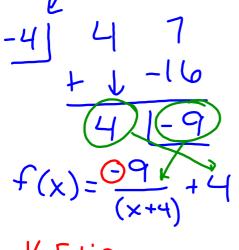
When given a rational function in the form of $f(x) = \frac{mx + n}{px + q}$ where $m \neq 0$ and $p \neq 0$, you can <u>use division</u> to re-write the function in a form to identify the transformations.

$$g(x) = \frac{3x - 4}{x - 1}$$

$$(3x - 4) \div (x - 1)$$

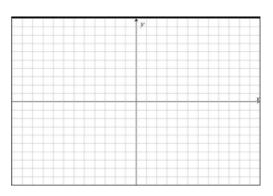
$$+ \frac{3}{3}$$

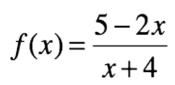
$$(3) (-1)$$

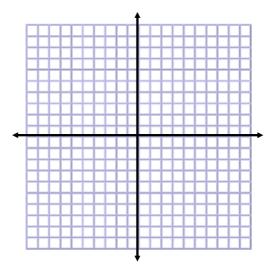

$$9(x) = -1$$

$$(x - 1)$$

$$\begin{cases} (x^{3} + Sx^{2} - 2x - 1) \\ \frac{1}{3} + (x - 3) \\ \frac{1}{3} + \frac{3}{3} + \frac{24}{3} = \frac{1}{3} = \frac{1$$


Given $f(x) = \frac{4x+7}{x+4}$, use division to re-write the function and


identify the transformations. Then sketch a graph and state the domain, range, and intervals of increasing and decreasing.



V. Flip V. Stretch by

Given $f(x) = \frac{3x+7}{x+2}$, use division to re-write the function and identify the transformations. Then sketch a graph and analyze.

