8-1 Radicals

- I can simplify radical expressions

Mar 9-8:31 PM

8-1 Radicals

Definition *n*th root

$$\sqrt[n]{b} = a$$
 means $b = a^n$

- if n≥2 and even then a and b must be greater than or equal to 0. (positive)
- if $n \ge 3$ and odd, then a and b can be any real number.

$$\ln \sqrt[n]{b}: \qquad \qquad |n| = \frac{1}{n} |n| = \frac{1}{n}$$

The symbol $\sqrt{\ }$ is called the radical

n is called the index

b is called the radicand

if there is no written index, an index of 2 is implied

Know your powers and roots

$$1^{2} = 1$$
 $\sqrt{1} = 1$ $1^{3} = 1$ $\sqrt[3]{1} = 1$ $2^{2} = 4$ $\sqrt{4} = 2$ $2^{3} = 8$ $\sqrt[3]{8} = 2$ $3^{2} = 9$ $\sqrt{9} = 3$ $3^{3} = 27$ $\sqrt[3]{27} = 3$ $4^{2} = 16$ $\sqrt{16} = 4$ $4^{3} = 64$ $\sqrt[3]{64} = 4$ $5^{2} = 25$ $\sqrt{25} = 5$ $5^{3} = 125$ $\sqrt[3]{125} = 5$

Mar 9-8:39 PM

Feb 15-7:35 AM

Feb 23-6:47 AM

Simplifying

If n≥2 is a positive integer and a is a real number, then

$$\sqrt[n]{a^n} = a$$
 if $n \ge 3$ is odd
 $\sqrt[n]{a^n} = a$ if $n \ge 2$ is even $\frac{1}{2}$

For example

$$\sqrt{x^2} = |x| \qquad \sqrt[3]{x^3} = x \qquad \sqrt[4]{x^4} = |x| \qquad \text{and so on}$$

But to make our life easier some instructions will say "Assume all variables are greater than or equal to zero." In which case:

$$\sqrt{x^2} = x \qquad \sqrt[3]{x^3} = x \qquad \sqrt[4]{x^4} = x \qquad \text{on}$$

SO READ YOUR INSTRUCTIONS!!!

Feb 23-6:54 AM

Reduce. Assume all variables are greater than or equal to zero.

$$\sqrt{x^2} = \sqrt{\times \times} \sqrt[5]{x^5} = \times$$

$$= \times$$

$$\sqrt[3]{x^3} = \times \sqrt[6]{z^6} = \Xi$$

Reduce Assuming all variables are greater then or equal to zero.

(You can either do these using rational exponents or not.)

Feb 23-7:03 AM

Feb 23-6:49 AM

Feb 23-7:07 AM

