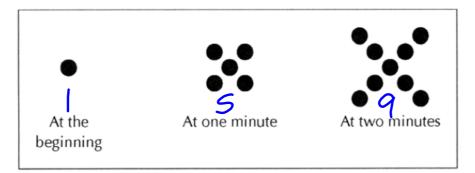
You may pick your seat today, but no back row!

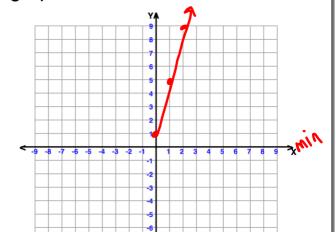

8-1 Sequences

Objectives: I can write arithmetic and

geometric sequences using explicit and recursive forms.

Write the next 3 terms for the following:

c.
$$\{15, 5, \frac{5}{5}, \frac{5}{9}, \frac{5}{27}, \frac{5}{81}, \frac{5}{295}\}$$



1. Describe the pattern that you see in the sequence of figures above.

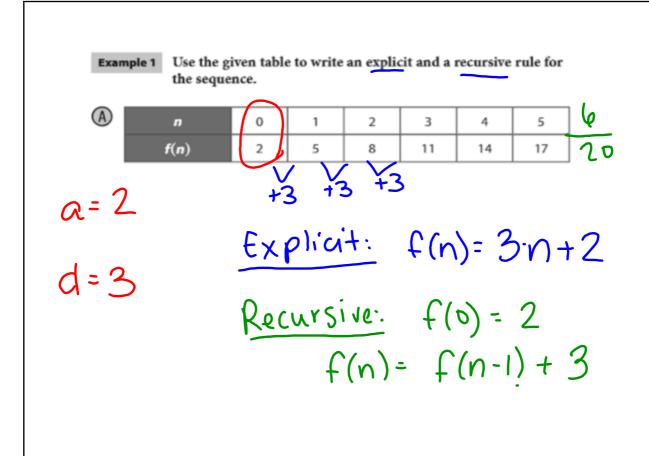
2. Assuming the sequence continues in the same way, how many dots are there at 3 minutes? At 4 minutes?

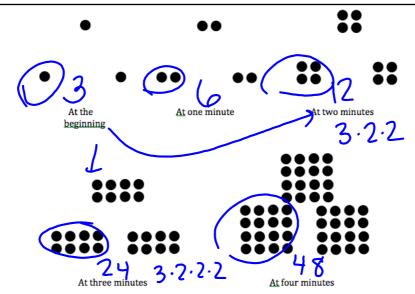
3. Make a table of values and graph

X min	y dots
0	
1	5
2	9
3	13

4. Write an equation to represent the pattern

Arithmetic Sequence

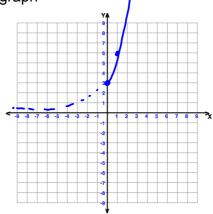

arithmetic - sequence with common differencebetween successive terms (repeated addition)


explicit - each term is defined independently

$$f(n) = a + dn$$
 for $n \ge 0$

recursive - use the previous term to define thefollowing terms

$$f(0) = a$$
, $f(n) = f(n-1) + d$ $n \ge 1$
 $f(0) = 1$, $f(n) = f(n-1) + 4$
 $a = initial$ value (0th term)
 $d = common$ difference (# added)
 $n = term$ number



1. Describe the pattern that you see in the sequence of figures above.

Multiplying by 2

- 2. Assuming the sequence continues in the same way, how many dots are there at 5 minutes? $48 \times 2 = 96$
 - 3. Make a table of values and graph

X	у
0	3
1	6
2	12
3	24

4. Write an equation to represent the pattern

$$f(0)=3$$

 $f(n)=f(n-1)-2$

$$(x)$$
 n = minutes
 (y) $f(n)$ = dots

Geometric Sequence

geometric - sequence with a common factor between successive terms (repeated multiplication)

explicit:
$$f(n) = a \langle r \rangle^n$$

recursive:
$$f(n) = f(n-1) \cdot r$$

$$f(0) = a$$

Write explicit and recursive rules to represent the table

Recursive:
$$f(0) = 3$$

 $f(n) = 2 \cdot f(n-1)$

Write explicit and recursive rules to represent the table

B	n 💍	1	2	3	4	5		<i>j</i> – 1	j	
	f(n) 25	<u>1</u> 25	<u>1</u> 5	1	5	25		ar ^(j-1)	ar ^j	
S x x x x x x x x x x x x x x x x x x x										

$$r = 5$$
 Explicit: $f(n) = \frac{1}{125}(5)^n$

$$a = \frac{1}{125}$$
Recursive: $f(0) = \frac{1}{125}$
 $f(n) = 5 \cdot f(n-1)$

Your Turn

Write the explicit and recursive rules for a geometric sequence given a table of values.

$f(n)$ $\frac{1}{27}$ $\frac{1}{9}$ $\frac{1}{3}$ 1 3 9 27	4.	n	0	1	2	3	4	5	6	
		f(n)	1 27	1/9	<u>1</u> 3	1	3	9	27	

5.	n	1	2	3	4	5	6	7	
	f(n)	0.001	0.01	0.1	1	10	100	1000	

$$3, 15, 45, ...$$

15t

term

 $15 = 5$
 $10, 5, 2.5, ...$
 $\frac{5}{10} = \frac{1}{2}$