8-3 Exponential Review

I can apply exponential properties and use them
I can model real-world situations using exponential functions

Warm-Up

- 1. Find the next three terms in the sequence
 - 2, 6, 18, 54, <u>162</u>, <u>486</u>, <u>1458</u>
- 2. Fill in the table, then plot the points (label your scale)

n ×-va	O	1	2	3	4	5
f(n)	1 Ki's	2	4	8	16	32
	,	2	\ *2			

If we connected the points, what do you notice about the graph?

exponential

Have you ever seen a graph like this before?

EXPONENTIAL FUNCTION

Starting

Graph the following functions on a calculator and sketch. Be sure to plot the y-intercept

a.
$$f(x) = 2^x$$
 b. $f(x) = \left(\frac{1}{2}\right)^x$

b.
$$f(x) = \left(\frac{1}{2}\right)^x$$

What did you notice about the graphs and their equations?

Exponential Growth and Decay

When b>1, the function represents exponential growth

When 0 < b < 1, the function represents exponential decay

fraction or decimal smaller than

Determine whether each function represents growth or decay

a.
$$f(x) = 13 \left(\frac{1}{3}\right)^x$$
Decay $\frac{1}{3} < 1$

a.
$$f(x) = 13 \left(\frac{1}{3}\right)^{x}$$
 b. $g(x) = \left(\frac{3}{2}\right)^{x} \frac{3}{2} = 1.5 > 1$

Decay $\frac{1}{3} < 1$ Growth

Write one equation that represents growth and one that represent decay

Exponential Growth/Decay Equation

$$f(t) = a(1 \pm r)^t$$

+ = increasing - = decreasing

(f(t)) the amount after time t

a: initial value (starting amount y-intercept)

r: rate > % as decimal

(t) time (variable)

John researches a baseball card and find that it is currently worth \$3.25. However, it is supposed to increase in value

11,% per year.
$$f(t) = a(1 \pm r)^t$$

a) Write an exponential equation to represent this situation

$$\alpha = 3.25$$
 $r = 0.11$

$$f(t) = 3.25(1+.11)^{t} = 3.25(1.11)^{t}$$

b) How much will the card be worth in 10 years?

c) Use your graphing calculator to determine in how many years will the card be worth \$26.

You Try!

On federal income tax returns, self employed people can depreciate the value of business equipment. Suppose a computer valued at \$2765 depreciates at a rate of 30% per year. $f(t) = a(1 \pm r)^{t}$

a) Write an exponential equation to model this situation

$$a = 2765$$

 $r = .30$ $f(t) = 2765(1 - .3)^{t} : 2765(1)$

b) How much will this computer be worth in 5 years?

c) Use your graphing calculator to determine in how many years will the computer be worth \$350.

$$t = 5.8$$
 years

The population of Orem in 1950 was 4,000 and was increasing at a rate of 2.6% per year.

a) Predict the population of Orem in 1975 and 2000.

b) Using your graphing calculator, predict when Orem's population will hit 200,000 people.

The half-life of Carbon-14 is 5700 years. If a fossil decayed from 15 grams to 1.875 grams, how old is the fossil? (use your calculator)

Compound Interest Formula

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

P is the principal

r is the annual interest rate

n is the number of compounding periods per yeart is the time in years

Write an equation then find the final amount for each investment.

a. \$1000 at 8% compounded semiannually for 15 years

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

You Try!

b. \$1750 at 3.65% compounded daily for 10 years

Using a calculator, determine how many years it will take for the amount to reach \$4000. Investigate the growth of \$1 investment that earns 100% annual interest (r=1) over 1 year as the number of compounding periods, n, increases.

Compounding schedule	n	$1\left(1+\frac{1}{n}\right)^n$	Value of A
annually	1		
semiannually	2		
quarterly	4		
monthly	12		
daily	365		
hourly	8760		
every minute	525600		

What does the value of A approach?

The value e is called the natural base

The exponential function with base e, $f(x)=e^x$, is called the natural exponential function.

 $e \approx 2.71828182827$

what you need to know is $e \approx 2.7$

Evaluate
$$f(x) = e^x$$
 for

a.
$$x = 2$$

b.
$$x = \frac{1}{2}$$

c.
$$x = -1$$

Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the *continuous compounding formula*.

Continuous Compounding Formula

If *P* dollars are invested at an interest rate *r*, that is compounded continuously, then the amount, *A*, of the investment at time *t* is given by

$$A(t) = Pe^{rt}$$

A person invests \$1550 in an account that earns 4% annual interest compounded continuously.

- a. Write an equation to represent this situation
- b. Using a calculator, find when the value of the investment reaches \$2000.

$$A(t) = Pe^{rt}$$