8-4 Solving Radical Equations

Objectives:

1. I can solve radical equations and check for extraneous solutions.

Mar 12-4:34 PM

Graph both sides of $\sqrt{4x-4} = x+1$ as separate functions on your calculator.

How many solutions does $\sqrt{4x-4} = x+1$ have?

Replace the graph of y = x + 1 with the graph of $y = \frac{1}{2}x$.

之X

How many solutions does $\sqrt{4x-4} = \frac{1}{2}x$ have?

Replace the graph of $y = \frac{1}{2}x$ with the graph of y = 2x - 5.

How many solutions does $\sqrt{4x-4} = 2x-5$ have?

Mar 12-4:53 PM

Solving Analytically

Solve.

$$4\sqrt{x} - 6 = 6$$

$$4\sqrt{x} - 6 + 6 = 6 + 6$$

$$4\sqrt{x} = 12$$

Simplify.

Now divide each side by 4 to isolate the radical.

$$4\sqrt{x} = 12$$

$$\sqrt{x} = 3$$

Divide and simplify.

4\9-6=6 4(3)-6=6 12-6=6

Next, square each side of the equation to eliminate the radical.

$$(\sqrt{x})^2 = 3^2$$

x = 9

Simplify.

Finally, check x = 9 in the original equation to verify that it is a solution and not an extraneous solution.

Mar 12-4:54 PM

B
$$(x+6)^{\frac{1}{2}} - (2x-4)^{\frac{1}{2}} = 0$$

 $1 \times + 6 - \sqrt{2} \times - 4 = 0$ Check
 $1 \times + 6 = \sqrt{2} \times - 4$ $1 \times 6 = \sqrt{2} \times - 4$
 $1 \times 6 = 2 \times - 4$ $1 \times 6 = \sqrt{2} \times - 4$
 $1 \times 6 = 2 \times - 4$ $1 \times 6 = \sqrt{16} =$

Mar 16-7:35 AM

Example 2 Solve the equation.

B
$$\sqrt[3]{x-5} = x+1$$

8. Solve
$$2(x-50)^{\frac{1}{3}} = -10$$
.

Mar 12-5:05 PM

Solve the following:

$$\sqrt[3]{x-5} = \sqrt[3]{7-x}$$

$$\sqrt[3]{x+2} = \sqrt[3]{x+3}$$

Mar 19-10:16 PM