Unit 8 Quick Quiz

$$\sqrt[5]{5} =$$

$$\sqrt{5} \cdot \sqrt{3} =$$

$$\sqrt[5]{5} =$$

$$5^3 =$$

$$\sqrt{\frac{18}{25}} =$$

$$\sqrt[3]{64} =$$

$$36^{\frac{1}{2}} =$$

Mar 21-10:19 AM

8-5 Inverse Functions

Objectives:

- -I can find the inverse of a given function
- -I can verify that an inverse is a function

Inverse of a Relation

The **inverse of a relation** consisting of the ordered pairs (x, y) is the set of all ordered pairs (y, x).

Notation:
$$f^{-1}(x)$$

Represents the inverse of the function $f(\chi)$

Feb 5-11:43 AM

Horizontal-Line Test

The inverse of a function is a function if and only if every horizontal line intersects the graph of the given function (passed the vertical-line test) at no more than one point.

If a function passes both the vertical line test AND the horizontal line test, then it is a **one-to-one** function.

Feb 5-11:44 AM

Inverses - graphically

Inverse relations are reflections of each other over the line y = x (identity function) Show f(x) = 6 - 2x and $g(x) = \frac{6 - x}{2}$ are inverses graphically

f(x): (1,4) (3,0) g(x): (4,1) (0,3)

Sep 15-7:17 AM

Graph the inverse of the graph. (Use y=x to find inverse points)

Feb 24-10:39 AM

To find the inverse equation of a function

- 1. Change f(x) to y.
- 2. Interchange x and y
- 3. Solve for *y*
- 4. Change new y to f'(x)

Feb 5-11:44 AM

Given
$$a^n = b$$

If n is odd:
$$a = \sqrt[n]{b}$$

If n is even:
$$a = \pm \sqrt[n]{b}$$

Find the inverse of each function

$$f(x) = x^{2} + 1$$

$$y = x^{2} + 1$$

$$x = x^{2} + 1$$

$$x = y^{2} + 1$$

$$x = y^{2} + 1$$

$$x = y^{2} + 1$$

$$x = 2y^{2} - 3$$

$$y = \frac{x+3}{2}$$

$$x = -1 = y^{2}$$

$$y = -\frac{x+3}{2}$$

Sep 8-10:34 AM

Find the inverse of each function. Is the inverse a function?

$$h(x) = 2x^{3} + 3 g(x) = \sqrt[3]{x - 3}$$

$$f'(x) = \sqrt[3]{x - 3}$$

$$f'(x) = (x + 3)^{3}$$

Find the inverse of each function. Is the inverse a function?

Is the inverse a function?

$$f(x) = 2x + 5$$

$$x = 2y + 5$$

$$x - 5 = 2y$$

$$y = \frac{x - 5}{2}$$

$$f'(x) = \frac{x - 5}{2}$$

$$f'(x) = \frac{x - 5}{2}$$

$$y = x^{2} + 7$$

$$y = x^{2$$

Oct 22-10:23 AM

Find the inverse of each function. Is the inverse a function?

$$f(x) = \sqrt{2x-3} \qquad g(x) = 3x^{2} + 2$$

$$X = \sqrt{2y-3} \qquad X = 3y^{2} + 2$$

$$X^{2} = 2y - 3$$

$$X^{2} + 3 = 2y$$

$$Y = \frac{x^{2}+3}{3}$$

$$Y$$

Sep 8-10:36 AM

Find the inverse of each function. Is the inverse a function?

$$f(x) = (x+3)^{2} f(x) = (x-5)^{3}$$

$$X = (y+3)^{2} X = (y-5)^{3}$$

$$1 + \sqrt{x} = y+3$$

$$1 + \sqrt{x} = y+3$$

$$1 + \sqrt{x} = y+3$$

$$1 + \sqrt{x} = y$$

$$1 +$$

Oct 22-10:22 AM