9-1 Defining and evaluating logarithms

I understand that the logarithm is the inverse of an exponential

I can verify an inverse function using composition

I can convert between logarithm and exponential form

Explain 1 Converting Between Exponential and Logarithmic Forms of Equations

In general, the exponential function $f(x) = b^x$, where b > 0 and $b \ne 1$, has the logarithmic function $f^{-1}(x) = \log_b x$ as its inverse. For instance, if $f(x) = 3^x$, then $f^{-1}(x) = \log_3 x$, and if $f(x) = \left(\frac{1}{4}\right)^x$, then $f^{-1}(x) = \log_{\frac{1}{4}} x$. The inverse relationship between exponential functions and logarithmic functions also means that you can write any exponential equation as a logarithmic equation and any logarithmic equation as an exponential equation.

Exponential Equation

Logarithmic Equation

$$b^{x} = a \iff \log_{b} a = x$$

base $b > 0, b \neq 1$ base

© Houghton Mifflin Harcourt Publishing Company

Exam	ples
	PICC

Exponential Equation	Logarithmic Equation
43 = 64	$\log_4 64 = 3$
$5^{-2} = \frac{1}{25}$	$\log_5 \frac{1}{25} = -2$
3 ⁵ = 243	log 3 243 = 5
$4^{-3} = \frac{1}{64}$	$\log_4 \frac{1}{64} = -3$
$\left(\frac{3}{4}\right) = s$	logs, S=t
1 W = V	$\log_{\frac{1}{5}} v = w$
	109 - V = N

The natural logarithm:

$$y = \ln x$$
 is equivalent to $x = e^y$

The common logarithm:

$$y = \log x$$
 is equivalent to $x = 10^y$

Exponential Equation	Logarithmic Equation
$e^{5} \approx 148.4$	$ln(148.4) \approx 5$
61.8 ≈ 6	$ln6 \approx 1.8$
$10^5 = 100,000$	log 100,000=5
103 = 1,000	log 1,000 = 3

A If
$$f(x) = \log_{10} x$$
, find $f(1000)$, $f(0.01)$, and $f(\sqrt{10})$.

$$f(0.01) = \begin{cases} 1000 \\ 10 \end{cases} = \begin{cases} 1000 \\ 10 \end{cases}$$

Find the exact value without a calculator

$$\log_{2} 32 = 5$$

$$\log_{4} \frac{1}{16} = -2$$

$$2^{?} = 32$$

$$2^{?} = 32$$

$$\log_{10,000,000} = 7$$

You try

$$\log_5 25 = 2$$
 $\log_2 \frac{1}{8} = -3$

$$\log 1000 = 3$$
 $\log .001 = -3$

The acidity level, or pH, of a liquid is given by the formula pH = $\log \frac{1}{[H^+]}$ where $[H^+]$ is the concentration (in moles per liter) of hydrogen ions in the liquid. In a typical chlorinated swimming pool, the concentration of hydrogen ions ranges from 1.58×10^{-8} moles per liter to 6.31×10^{-8} moles per liter. What is the range of the pH for a typical swimming pool?

pH = acidity

[H+] = hydrogen-ion concentration

pH = log
$$\left(\frac{1}{1-58xi0-8}\right) = 7.8$$

pH = log $\left(\frac{1}{6.31xi0-8}\right) = 7.2$

The intensity level L (in decibels, dB) of a sound is given by the formula $L = 10 \log \frac{I}{I_0}$ where I is the intensity (in watts per square meter, W/m²) of the sound and I_0 is the intensity of the softest audible sound, about 10^{-12} W/m². What is the intensity level of a rock concert if the sound has an intensity of 3.2 W/m²?