9-3 Solving Exponential and Logarithmic equations

Objectives:

I can solve exponential and logarithmic equations both graphically and algebraically.

Solving Graphically

$$275e^{0.06x} = 1000$$

$$y_1 = 275e^{.06x} y_2 = 1000$$

$$x = 21.52$$

$$10^{2x} = 1500$$

$$y_1 = y_2 = x = 1.59$$

$$x = 1.59$$

Inverses			
Addition/Subtraction	Natural Log/e^	Common Log/10 [^]	Log base b/b^
x - 5 = 10 + 5 + 5 x - 16	Inex #5 log base thex=In5 x=In(5)	910° #9100 x t og 10° = log 10° x= 109 10°	190 2× 100 1
x + 7 = 21 x = 14	$e^{\ln x} = 7$ $x = e^{7}$	log(x)=3 (0 X = (0) ³	$ \log_3 x = 4 $ $ \times = 3 $

Solve the following equations
$$\frac{10}{5} = \frac{5e^{4x}}{5} \qquad x = 0.17$$

$$\frac{10}{5} = \frac{$$

Solve the following
$$\ln(x+12) = 3 \ln 2$$

$$\log(x^4) = 2$$

$$|\log x| = 2$$

$$|(\log x| = 2)$$

$$|$$

$$\ln(x+12) = 3\ln 2$$

$$\ln(x+12) = \ln(2^{3})$$

$$\ln(x+12) = \ln(8)$$

$$\ln(x+12) = \ln(8)$$

$$2 \ln(x+12) = \ln(8)$$

$$2 \ln(x+12) = 2 \ln(8)$$

Solve the following $\frac{\log(x+2)-3=5}{+3+3}$ $\log_{10}(x+2))=10$ $\frac{x+2=100,000,000}{x=2}$ x=99,999,998 $\log_{4}(1-x)=1$ $1-x=4^{1}$ $1-x=4^{1}$ $1-x=4^{1}$ $1-x=4^{1}$ 1-x=3 -1 x=3

Suppose that \$250 is deposited into an account that
$$\frac{1}{250}$$
 is deposited into an account that $\frac{1}{250}$ is deposited into a account that $\frac{1}{250}$ is d

How long will it take for a \$250 initial investment in an account that pays 4.5% compounded continuously to grow to \$750? A(+) = Pe^{rt}

$$\frac{750}{250} = \frac{250e^{.045t}}{250}$$

Comparing acidity:
$$pH = -\log[H^+]$$

 H^+ = hydrogen-ion concentration

Vinegar has a pH of 2.4. What is it's hydrogen ion concentration?

Baking soda has a pH of 8.4. What is it's hydrogen ion concentration?

Which has a higher hydrogen ion concentration?

