Name:

\qquad

Factor Completely:

1. $9 x^{2}-6 x+4$
2. $64 x^{3}-27$
3. $x^{4}+3 x^{3}-8 x-24$

Use the Graph for the following questions:

4. What is the minimum?
5. Where is the graph decreasing?
6. What is the Domain?
7. What is the Range?
8. What is the y-intercept?

Perform the operation and write the answer in standard form.
9. $\left(2 x^{2}+6 x^{4}-7 x-3 x^{3}\right)+\left(5 x^{3}-7 x+14\right)=$
10. $\left(x+3-17 x^{2}\right)-\left(7+3 x^{2}-14\right)$
11. $(x+2)\left(x^{2}-3 x+4\right)$
12. $\left(x^{2}+2 x+5\right)^{2}$
13. Graph the piecewise function: $f(x)=\left\{\begin{array}{l}x, x<0 \\ x^{2}+1, x \geq 0\end{array}\right.$
14. Write a piecewise function for the graph:

Use the graph for the following questions:
14. Find the zeroes of the function:
15. Write the function in factored form:
16. Determine the interval(s) where the graph is positive:

Divide:

17. $\left(18 x^{3}-3 x^{2}+x-1\right) \div\left(x^{2}-4\right)$
18. $\left(3 x^{3}-2 x-8\right) \div(x+2)$
19. Find the zeros, multiplicity, end behavior, and sketch a graph of the function: $f(x)=-x^{2}(x-3)(x+4)^{2}$

Zeros	Multiplicity	Type of Intersection

End Behavior:

