9-2 Trig Inverses and Reciprocals

- I can identify the reciprocal of a trig ratio
- I can write all 6 trig ratios of a triangle
- I can use inverse trig functions to find measures of angles.
- I can solve a triangle

Oct 20-4:52 PM

Fill in the trigonometric expression with the correct ratio from the figure.

$$\sin A = \frac{5}{13} \qquad \sin B = \frac{12}{13}$$

$$\sin B = \frac{12}{12}$$

$$\cos A = 12/13$$

$$\cos B = \frac{5}{13}$$

$$tan A = \frac{5}{12}$$

$$\tan B = \frac{12}{5}$$

The cosecant, secant, and cotangent ratios can be expressed in terms of sine, cosine, and tan ratios.

$$\cos\theta = \frac{1}{\sin\theta} \sec\theta = \frac{1}{\cos\theta}, \cot\theta = \frac{1}{\tan\theta}$$

$$-\frac{h}{o} \qquad \frac{a}{h} \qquad \frac{b}{a}$$

$$\cos\theta = \frac{1}{\tan\theta}$$

$$\cot\theta = \frac{1}{\tan\theta}$$

Feb 26-11:55 AM

When you know the trigonometric ratio of an angle you can find the measure of that angle by using the *inverse relation*

If
$$\tan A = \frac{3}{4}$$
 then $m \angle A = \tan^{-1} \frac{3}{4}$

$$tan \theta = \frac{3}{4}$$
 $tan^{-1}(\frac{3}{4}) = 0$
 $\theta \approx 36$

Once you know the sine, cosine or the tangent of an acute angle, then you can use a calculator to find the measure of the angle.

For acute angle A:

If
$$\sin A = x$$
, then $\sin^{-1}(x) = m \measuredangle A$
 $\sin A = x$ $\sin^{-1}(x) = m \measuredangle A$

If
$$\cos A = x$$
, then $\cos^{-1}(x) = m \angle A$

If
$$\tan A = x$$
, then $\tan^{-1}(x) = m \angle A$

Oct 20-4:58 PM

Inverse Trig

Find the $m \angle A$ by using inverse trigonometric functions.

١

Feb 26-11:57 AM

Solving a triangle involves finding the measures of all of the unknown sides and angles of the triangle.

Helpful hints:

- The sum of the two acute angles is 90°
- If you know two sides of the right triangle, use the Pythagorean Theorem to find the third side.
- Use trig ratios to find the length of sides and trig inverses to find the measure of angles

Feb 26-11:58 AM

Apr 14-12:17 PM

Solve the right triangle. Round decimals to the nearest tenth.

$$\angle P =$$

$$p =$$

$$\angle Q =$$

$$q =$$

$$\angle R =$$

$$r =$$

Oct 20-5:02 PM

Solve the right triangle. Round decimals to the nearest tenth.

$$\measuredangle A =$$

$$a =$$

$$\angle B =$$

$$b =$$

$$\angle B = \qquad b =$$

$$\angle C = \qquad c =$$

$$c =$$